Solar panels crown rooftops and roadside signs, and help keep spacecraft powered. But how do solar panels work?
Simply put, a solar panel works by allowing photons, or particles of light, to knock electrons free from atoms, generating a flow of electricity, according to the University of Minnesota Duluth(opens in new tab). Solar panels actually comprise many, smaller units called photovoltaic cells — this means they convert sunlight into electricity. Many cells linked together make up a solar panel.
Each photovoltaic cell is basically a sandwich made up of two slices of semi-conducting material. According to the Proceedings National Graduate Conference 2012(opens in new tab), photovoltaic cells are usually made of silicon — the same stuff used in microelectronics.
To work, photovoltaic cells need to establish an electric field. Much like a magnetic field, which occurs due to opposite poles, an electric field occurs when opposite charges are separated. To get this field, manufacturers "dope" silicon with other materials, giving each slice of the sandwich a positive or negative electrical charge.
Specifically, they seed phosphorous into the top layer of silicon, according to the American Chemical Society(opens in new tab), which adds extra electrons, with a negative charge, to that layer. Meanwhile, the bottom layer gets a dose of boron, which results in fewer electrons, or a positive charge. This all adds up to an electric field at the junction between the silicon layers. Then, when a photon of sunlight knocks an electron free, the electric field will push that electron out of the silicon junction.
A couple of other components of the cell turn these electrons into usable power. Metal conductive plates on the sides of the cell collect the electrons and transfer them to wires, according to the Office of Energy Efficiency and Renewable Energy (EERE)(opens in new tab). At that point, the electrons can flow like any other source of electricity.
Researchers have produced ultrathin, flexible solar cells that are only 1.3 microns thick — about 1/100th the width of a human hair — and are 20 times lighter than a sheet of office paper. In fact, the cells are so light that they can sit on top of a soap bubble, and yet they produce energy with about as much efficiency as glass-based solar cells, scientists reported in a study published in 2016 in the journal Organic Electronics(opens in new tab). Lighter, more flexible solar cells such as these could be integrated into architecture, aerospace technology, or even wearable electronics.